
PCIS3BASE

V 1.3 June 29, 2010 User Manual C1010-3105

SPARTAN-3 FPGA board with PCI interface
Order number: C1010-3105

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -1- preliminary

http://www.cesys.com/

Copyright information

Copyright © 2010 CESYS GmbH. All Rights Reserved. The information in this document is
proprietary to CESYS GmbH. No part of this document may be reproduced in any form or
by any means or used to make derivative work (such as translation, transformation or
adaptation) without written permission from CESYS GmbH.

CESYS GmbH provides this documentation without warranty, term or condition of any kind,
either express or implied, including, but not limited to, express and implied warranties of
merchantability, fitness for a particular purpose, and non-infringement. While the
information contained herein is believed to be accurate, such information is preliminary,
and no representations or warranties of accuracy or completeness are made. In no event
will CESYS GmbH be liable for damages arising directly or indirectly from any use of or
reliance upon the information contained in this document. CESYS GmbH will make
improvements or changes in the product(s) and/or program(s) described in this
documentation at any time.

CESYS GmbH retains the right to make changes to this product at any time, without notice.
Products may have minor variations to this publication, known as errata. CESYS GmbH
assumes no liability whatsoever, including infringement of any patent or copyright, for sale
and use of CESYS GmbH products.

CESYS GmbH and the CESYS logo are registered trademarks.

All product names are trademarks, registered trademarks, or service marks of their
respective owner.

 ⇒ Please check www.cesys.com to get the latest version of this document.

CESYS Gesellschaft für angewandte Mikroelektronik mbH

Zeppelinstrasse 6a

D – 91074 Herzogenaurach

Germany

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -2- preliminary

http://www.cesys.com/
http://www.cesys.com/

Overview

Summary of PCIS3BASE

The PCIS3BASE board is designed to meet today’s demands on development speed and
flexibility. Its heart is a 1,5 Million gates Spartan-3 FPGA. The master-clock and 93 FPGA
I/O Balls are routed to the expansion connector of the plug-in-board (PIB) slot. The PIB slot
also has connections to a 78-pin HD-SUB I/O connector. Plug-in boards can be standard
boards from CESYS, a board carrying the functionality defined by you or even your own
board.

• The standard plug-in board that comes with PCIS3BASE, provides 64 signals with 5 Volt
tolerant buffers.

• Plug-in boards can carry various interfaces like ADC, DAC, TTL Level I/O, RS232,
RS485, LVDS, Camera Link or user-defined interface standards.

• In addition to the Spartan-3 FPGA, there are 32 MByte SDRAM, Serial Flash Memory, an
internal interface and a bus-master PCI bridge on board.

• Users who wish to develop their own PCI-boards based on the PCIS3BASE can
purchase the PCIS3BASE source code package which contains the schematics of the
board as well all all sources (API, Tools).

• The PCI interface is not implemented inside the FPGA. There is a dedicated PCI-bridge
chip on the board. The FPGA connects to its local bus. This local bus is much easier to
handle than PCI. VHDL sample code that demonstrates how to use it comes with the
PCIS3BASE. Therefore, designers need not care about PCI-specific details. No PCI IP-
core is needed.

Feature list
• XILINX Spartan-3 FPGA 1.5 MIO system gates (XC3S1500-4FGG456C)
• PCI host bridge supports 3,3 Volt and 5 Volt PCI (PLX PCI9056BA66)
• High performance, up to 120 MByte/s data rate on PCI bus possible
• 32 MByte SDRAM (MICRON 48LC16M16A2)
• SPI Serial Flash Memory 4 MBit (512 KBytes x 8)
• PCI 2.1 compliant device (Plug-and-Play)
• 78-pin external I/O connector
• PIB64IO board included (64 I/O signals on ext. I/O connector, 5 Volt TTL)
• Allocated space for plug-in-board with two 100 pin connectors
• Internal expansion port RM 2,54 mm (28 I/O pins)
• 8 Leds connected to the FPGA
• JTAG connector for debugging and configuration

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -3- preliminary

http://www.cesys.com/

Included in delivery
• PCIS3BASE board
• PIB64IO plug-in-board
• One mating SUB-D high density 78-pin connector
• One CD-ROM containing the user's manual (English), drivers, libraries, tools and

example source code.

The included software, demonstration code and documentations might not be used without
a CESYS PCIS3BASE board nor distributed isolated.

The complete schematics of the board together with the software source-code of the API
and a license to use the CESYS API and software separately from the PCIS3BASE board
is available to customers who wish to take the PCIS3BASE as a starting point for
developing their own products. (order number C 2070 – 3706, PCIS3BASE source code
package). The source code package includes the right to use and distribute the software
and code examples without the original CESYS PCIS3BASE boards.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -4- preliminary

http://www.cesys.com/

Hardware

SPARTAN-3 FPGA

XC3S1500-4FGG456C FPGA features:
System Gates 1500k

Configurable Logic Blocks 64 x 52

Logic cells 29,952

Block Ram Bits 576k

Distributed Ram Bits 208k

DCMs 4

Multipliers 32

For details on SPARTAN-3TM FPGA, please refer to data sheet at:
http://direct.xilinx.com/bvdocs/publications/ds099.pdf

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -5- preliminary

Figure 1: PCIS3BASE block diagram

JTAG

Local
Bus

PCI9056
PCI

Bus bridge

C
o
n
n
e
c
t
o
r

Plug-In board

H
D

-S
U

B
78

Leds

4 MBit SPI
Flash Memory

32 MByte
SDRAM

FPGA
SPARTAN-3
XC3S1500

50MHz

PCI Bus

C
o
n
n
e
c
t
o
r

Internal
Expansion

http://www.cesys.com/
http://direct.xilinx.com/bvdocs/publications/ds099.pdf

CESYS PIB slot

Like some other CESYS boards, PCIS3BASE has a Plug-In Board slot. The PIB slot
consists of two 100-pin connectors. One is wired to FPGA I/O balls, the other is wired to an
external 78-pin HD-Sub connector. To enable active devices to be powered on user-
generated PIB modules, supply voltages +3,3 Volt, +5 Volt and +12V are also available.
Delivered as standard with PCIS3BASE comes the PIB module PIB64IO with 64 IO (8
ports à 8 IO) with 5V tolerant buffers. For further information on pinout and switching
characteristics please check PIB64IO documentation.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -6- preliminary

Figure 2: PIB outline drawing and dimensions

C
on

ne
ct
or
s
ar
e

lo
ca
te
d
on

bo
tto

m

si
de

of
P
lu
g-
in
bo

ar
d

TOP

[mm]

76
.2
5

P IB64IO

73
.0
1

70
.8
5

9.
89

3.
24

16.5

v1.0

7.5

33.5

26.5

4x 3.2

64

50

http://www.cesys.com/

Board Size

PCIS3BASE complies to PCI Local Bus Specification Revision 2.3 as Universal 32-bit
short-card and supports both 3,3 Volt and 5V signaling.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -7- preliminary

Figure 3: PCIS3BASE outline and dimensions

1
0
8
.2
5

3
5

1
0
4
.7
7

1
4

27.05

36.05

77.05

33

26.5

O3.2 x6

33.5

139

http://www.cesys.com/

Connectors and FPGA pinout

Description

PCIS3BASE can be used as a development platform for designs with XILINIXTM SPARTAN-
3 FPGAs as well as an OEM-component for job lot production. A 78-pin high-density D-
SUB connector allows the attachment of external hardware to the FPGA. Between 78-pin
connector and FPGA IO-pins, there is allocated space with two 100-pin connectors to plug
user-interface electronics (PIB). The PCIS3BASE board comes with a PIB that provides
5Volt tolerant IOs organized in 8 signals by 8 banks (PIB64IO). The board is equipped with
a XC3S1500-4FGG456C XILINXTM FPGA, a member of the Spartan-3 family. This
programmable logic device is configured by loading a bitstream that represents the design.
The software that comes with the board permits to load new configurations at any time.
There is no need to reboot the computer. Because the PCI interface is implemented by
using the dedicated PCI-bridge chip PCI9056 from PLX TechnologyTM, the user does not
need to bother about PCI bus implementation details nor has to use PCI cores in his FPGA
design. A 50 MHz clock oscillator supplies the basic clock that can be used by the FPGA.
Additional clock sources can be present on PIBs if required.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -8- preliminary

Figure 4: PCIS3BASE connector diagram

LED_Y

LED_G

C
O
N
9

50

1

51

C
O
N
8

100

module

slot

PIB

Y1

50

C
O
N
7

1

9056

51

100

PLX

XILINX
SPARTAN-3

FPGA

J21

C1010-3105

S
D
R
A
M

CON1

http://www.cesys.com/

FPGA I/O balls

All FPGA VCCO-Pins on PCIS3BASE board are connected to 3,3 Volt. The I/O Balls of the
SPARTAN-3 FPGA do NOT accept 5 Volt Input signals. If 5 Volt signals are connected
without proper level-shifting or series resistors, the FPGA will get damaged. If 3,3 Volt
signals are used with long traces or cables in conjunction with improper termination, the
resulting overshoot and undershoot may damage the FPGA as well. Please refer to
XilinxTM application note xapp659.pdf for details.

! Never apply voltages outside the interval [-0.5V….+3.8V] to any FPGA I/O Ball. Take care
of overshoot / undershoot conditions.

Please use the File “pcis3base.ucf” when assigning FPGA I/O balls to your design.
Although the ball positions in this documentation are double-checked, the ucf-file is the
more reliable source.

LEDs

The PCIS3BASE is equipped with several LEDs. Upon successful configuration the CFG
LED lights up and stays on as long as the device is configured. Additionally 8 user-
configurable LEDs allow to make internal monitoring states visible by driving the
appropriate FPGA I/O high.

LEDs
LED Comment

LED1 GreenGreen FPGA I/O Ball U2
LED2 GreenGreen FPGA I/O Ball U3
LED3 GreenGreen FPGA I/O Ball U4
LED4 GreenGreen FPGA I/O Ball U5
LED5 YellowYellow FPGA I/O Ball V1
LED6 YellowYellow FPGA I/O Ball V2
LED7 YellowYellow FPGA I/O Ball V3
LED8 YellowYellow FPGA I/O Ball V4

CFG LED Configuration LED

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -9- preliminary

Figure 5: PCIS3BASE slot bracket

http://www.cesys.com/

Plug-In board connectors

The two 100-pin external expansion connectors are of type “female” with 1,27mm pitch (2
rows, 50 pins each). Please use the connector diagram to indicate pin 1. Mating
connectors among others are:

• SELTRONICS: order number: PL 169-35-100-G
• SAMTEC: order number: TFM-150-02-SDA

CON7 is used to connect the PIB to the FPGA

CON 7 Plug-In board to FPGA I/O- pin connector
Pin Signal name FPGA I/O ball Pin Signal name FPGA I/O ball
1 PIB_IO 0 A14 100 PIB_IO 92 C6

2 PIB_IO 1 B14 99 PIB_IO 91 C5

3 PIB_IO 2 D14 98 PIB_IO 90 C2

4 GND -- 97 PIB_IO 89 C1

5 PIB_IO 3 E14 96 PIB_IO 88 D6

6 PIB_IO 4 A13 95 PIB_IO 87 D5

7 PIB_IO 5 B13 94 PIB_IO 86 D4

8 PIB_IO 6 C13 93 PIB_IO 85 D3

9 PIB_IO 7 D13 92 PIB_IO 84 D2

10 PIB_IO 8 E13 91 PIB_IO 83 D1

11 PIB_IO 9 F13 90 PIB_IO 82 E6

12 PIB_IO 10 A12 89 PIB_IO 81 E4

13 PIB_IO 11 B12 (GCLK5) 88 PIB_IO 80 E3

14 PIB_IO 12 C12 (GCLK4) 87 PIB_IO 79 E2

15 PIB_IO 13 D12 86 PIB_IO 78 E1

16 PIB_IO 14 E12 85 PIB_IO 77 F6

17 PIB_IO 15 F12 84 PIB_IO 76 F5

18 PIB_IO 16 A11 (GCLK6) 83 PIB_IO 75 F4

19 PIB_IO 17 B11 (GCLK7) 82 PIB_IO 74 F3

20 PIB_IO 18 C11 81 PIB_IO 73 F2

21 PIB_IO 19 D11 80 PIB_IO 72 G6

22 PIB_IO 20 E11 79 PIB_IO 71 G5

23 GND -- 78 PIB_IO 70 G2
24 PIB_IO 21 F11 77 PIB_IO 69 G1

25 PIB_IO 22 A10 76 PIB_IO 68 H5

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -10- preliminary

http://www.cesys.com/

CON 7 Plug-In board to FPGA I/O- pin connector
Pin Signal name FPGA I/O ball Pin Signal name FPGA I/O ball
26 PIB_IO 23 B10 75 PIB_IO 67 K4

27 PIB_IO 24 C10 74 PIB_IO 66 K3

28 PIB_IO 25 D10 73 PIB_IO 65 K2

29 PIB_IO 26 E10 72 PIB_IO 64 K1

30 PIB_IO 27 F10 71 PIB_IO 63 L6

31 PIB_IO 28 A9 70 PIB_IO 62 L5

32 PIB_IO 29 B9 69 PIB_IO 61 L4

33 PIB_IO 30 D9 68 PIB_IO 60 L3

34 PIB_IO 31 E9 67 PIB_IO 59 L2

35 PIB_IO 32 F9 66 PIB_IO 58 L1

36 PIB_IO 33 A8 65 PIB_IO 57 M1

37 PIB_IO 34 B8 64 PIB_IO 56 M2

38 PIB_IO 35 C7 63 PIB_IO 55 M3

39 PIB_IO 36 D7 62 PIB_IO 54 M4

40 PIB_IO 37 E7 61 PIB_IO 53 M5

41 PIB_IO 38 F7 60 PIB_IO 52 M6

42 PIB_IO 39 A5 59 PIB_IO 51 N1

43 PIB_IO 40 A3 58 PIB_IO 50 N2

44 PIBCLK (50MHz) -- 57 PIB_IO 49 N3

45 GND -- 56 PIB_IO 48 N4

46 PIB_IO 41 B5 55 PIB_IO 47 T1

47 PIB_IO 42 B6 54 PIB_IO 46 T2

48 +3,3 Volt -- 53 PIB_IO 45 T4

49 +3,3 Volt -- 52 PIB_IO 44 T5

50 +3,3 Volt -- 51 PIB_IO 43 T6

CON8 is used to connect the PIB to the HD-Sub connector CON9

CON 8 Plug-In board to External 78-pin HD-Sub connector
Pin HD-Sub Comment Pin HD-Sub Comment
1 GND -- 100 GND --
2 GND -- 99 GND --
3 GND -- 98 GND --
4 HD-Sub Pin 39 Pair 0 97 HD-Sub Pin 59 Pair 8

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -11- preliminary

http://www.cesys.com/

CON 8 Plug-In board to External 78-pin HD-Sub connector
Pin HD-Sub Comment Pin HD-Sub Comment
5 HD-Sub Pin 20 Pair 0 96 HD-Sub Pin 78 Pair 8

6 HD-Sub Pin 38 Pair 1 95 HD-Sub Pin 58 Pair 9

7 HD-Sub Pin 19 Pair 1 94 HD-Sub Pin 77 Pair 9

8 HD-Sub Pin 37 Pair 2 93 HD-Sub Pin 57 Pair 10

9 HD-Sub Pin 18 Pair 2 92 HD-Sub Pin 76 Pair 10

10 HD-Sub Pin 36 Pair 3 91 HD-Sub Pin 56 Pair 11

11 HD-Sub Pin 17 Pair 3 90 HD-Sub Pin 75 Pair 11

12 HD-Sub Pin 35 Pair 4 89 HD-Sub Pin 55 Pair 12

13 HD-Sub Pin 16 Pair 4 88 HD-Sub Pin 74 Pair 12

14 HD-Sub Pin 34 Pair 5 87 HD-Sub Pin 54 Pair 13

15 HD-Sub Pin 15 Pair 5 86 HD-Sub Pin 73 Pair 13

16 HD-Sub Pin 33 Pair 6 85 HD-Sub Pin 53 Pair 14

17 HD-Sub Pin 14 Pair 6 84 HD-Sub Pin 72 Pair 14

18 HD-Sub Pin 32 Pair 7 83 HD-Sub Pin 52 Pair 15

19 HD-Sub Pin 13 Pair 7 82 HD-Sub Pin 71 Pair 15

20 HD-Sub Pin 12 -- 81 HD-Sub Pin 51 --

21 HD-Sub Pin 31 -- 80 HD-Sub Pin 70 --

22 HD-Sub Pin 11 -- 79 HD-Sub Pin 50 --

23 HD-Sub Pin 30 -- 78 HD-Sub Pin 69 --

24 HD-Sub Pin 10 -- 77 HD-Sub Pin 68 --

25 HD-Sub Pin 9 -- 76 HD-Sub Pin 67 --

26 HD-Sub Pin 8 -- 75 HD-Sub Pin 66 --

27 HD-Sub Pin 7 -- 74 HD-Sub Pin 65 --

28 HD-Sub Pin 6 -- 73 HD-Sub Pin 64 --

29 HD-Sub Pin 5 -- 72 HD-Sub Pin 63 --

30 HD-Sub Pin 4 -- 71 HD-Sub Pin 62 --

31 HD-Sub Pin 3 -- 70 HD-Sub Pin 61 --

32 HD-Sub Pin 2 -- 69 HD-Sub Pin 60 --

33 HD-Sub Pin 29 -- 68 HD-Sub Pin 49 --

34 HD-Sub Pin 28 -- 67 HD-Sub Pin 48 --

35 HD-Sub Pin 27 -- 66 HD-Sub Pin 47 --

36 HD-Sub Pin 26 -- 65 HD-Sub Pin 46 --

37 HD-Sub Pin 25 -- 64 HD-Sub Pin 45 --

38 HD-Sub Pin 24 -- 63 HD-Sub Pin 44 --

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -12- preliminary

http://www.cesys.com/

CON 8 Plug-In board to External 78-pin HD-Sub connector
Pin HD-Sub Comment Pin HD-Sub Comment
39 HD-Sub Pin 23 -- 62 HD-Sub Pin 43 --

40 HD-Sub Pin 22 -- 61 HD-Sub Pin 42 --

41 HD-Sub Pin 21 -- 60 HD-Sub Pin 41 --

42 GND -- 59 GND --
43 GND -- 58 GND --
44 GND -- 57 GND --
45 +5 Volt -- 56 +5 Volt --
46 +5 Volt -- 55 +5 Volt --
47 +5 Volt -- 54 +5 Volt --
48 +12 Volt -- 53 +12 Volt --
49 +12 Volt -- 52 +12 Volt --
50 +12 Volt -- 51 +12 Volt --

To simplify connections to the external HD-Sub connector CON9 the following table lists all
connections from HD-Sub to internal PIB- connector CON8.

HD-Sub External 78-pin HD-Sub to Plug-In board connector CON 8
HD-SUB PIB HD-SUB PIB HD-SUB PIB HD-SUB PIB
HD-Pin 1 GND HD-Pin 21 41 HD-Pin 40 EARTH HD-Pin 60 69
HD-Pin 2 32 HD-Pin 22 40 HD-Pin 41 60 HD-Pin 61 70
HD-Pin 3 31 HD-Pin 23 39 HD-Pin 42 61 HD-Pin 62 71
HD-Pin 4 30 HD-Pin 24 38 HD-Pin 43 62 HD-Pin 63 72
HD-Pin 5 29 HD-Pin 25 37 HD-Pin 44 63 HD-Pin 64 73
HD-Pin 6 28 HD-Pin 26 36 HD-Pin 45 64 HD-Pin 65 74
HD-Pin 7 27 HD-Pin 27 35 HD-Pin 46 65 HD-Pin 66 75
HD-Pin 8 26 HD-Pin 28 34 HD-Pin 47 66 HD-Pin 67 76
HD-Pin 9 25 HD-Pin 29 33 HD-Pin 48 67 HD-Pin 68 77

HD-Pin 10 24 HD-Pin 30 23 HD-Pin 49 68 HD-Pin 69 78
HD-Pin 11 22 HD-Pin 31 21 HD-Pin 50 79 HD-Pin 70 80
HD-Pin 12 20 HD-Pin 32 18 HD-Pin 51 81 HD-Pin 71 82
HD-Pin 13 19 HD-Pin 33 16 HD-Pin 52 83 HD-Pin 72 84
HD-Pin 14 17 HD-Pin 34 14 HD-Pin 53 85 HD-Pin 73 86
HD-Pin 15 15 HD-Pin 35 12 HD-Pin 54 87 HD-Pin 74 88
HD-Pin 16 13 HD-Pin 36 10 HD-Pin 55 89 HD-Pin 75 90

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -13- preliminary

http://www.cesys.com/

HD-Sub External 78-pin HD-Sub to Plug-In board connector CON 8
HD-SUB PIB HD-SUB PIB HD-SUB PIB HD-SUB PIB

HD-Pin 17 11 HD-Pin 37 8 HD-Pin 56 91 HD-Pin 76 92
HD-Pin 18 9 HD-Pin 38 6 HD-Pin 57 93 HD-Pin 77 94
HD-Pin 19 7 HD-Pin 39 4 HD-Pin 58 95 HD-Pin 78 96
HD-Pin 20 5 -- -- HD-Pin 59 97 -- --

Internal Expansion port J21

The internal expansion connector J21 is of type male with 2,54 mm pitch (2 rows, 17 pins
each). The pins are connected to the FPGA directly. IO pins are NOT 5V tolerant.

! Never apply voltages outside the interval [-0.5V….+3.8V] to any FPGA I/O Ball. Take care
of overshoot / undershoot conditions.

Through J21 28 FPGA I/O are accessible. 24 of these I/O are routed as 12 pairs to support
differential signalling optionally. 3,3 Volt power supply is also available, so it is even
possible to power active devices on boards connected to J21. Current supplied over J21
should not exceed 100mA.

J21 Internal expansion connector
Pin FPGA I/O ball Comment Pin FPGA I/O ball Comment
1 E21 Bank2_IO21N 2 E22 Bank2_IO21P

3 D21 Bank2_IO17N 4 D22 Bank2_IO17P

5 C22 -- 6 F17 --

7 E19 Bank2_IO20N 8 E20 Bank2_IO20P

9 GND -- 10 GND --
11 D19 Bank2_IO16P 12 D20 Bank2_IO16N

13 E18 Bank2_IO19N 14 F18 Bank2_IO19P

15 A19 Bank1_IO06N 16 B19 Bank1_IO06P

17 C18 Bank1_IO09N 18 D18 Bank1_IO09P

19 GND -- 20 GND --
21 A18 Bank1_IO10N 22 B18 Bank1_IO10P

23 D17 Bank1_IO15N 24 E17 Bank1_IO15P

25 E16 -- 26 F16 --

27 B17 Bank1_IO16P 28 C17 Bank1_IO16N

29 3,3 Volt -- 30 3,3 Volt --
31 D15 Bank1_IO24N 32 E15 Bank1_IO24P

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -14- preliminary

http://www.cesys.com/

J21 Internal expansion connector
Pin FPGA I/O ball Comment Pin FPGA I/O ball Comment
33 A15 Bank1_IO25P 34 B15 Bank1_IO25N

Local bus signals

This section describes in short the interface between SpartanTM-3 FPGA and PLX
PCI9056. PCI9056 supports three types of local bus processor interface. For PCIS3BASE
only J mode with multiplexed address/data bus is available. From the three existing data
transfer modes of PCI9056 Direct Slave mode and DMA mode are implemented. For data
transmission 32-bit single read/write and DMA single and continuous burst cycles are
supported. Further information about the usage of the local bus interface can be found in
chapter D section 'design “pcis3base_top” '. It may also be useful to have a look at the
documentation for the PCI Bus Master I/O Accelerator PCI9056 at PLX
(http://www.plxtech.com/products/io/pci9056.asp). The following spreadsheet “Local bus
signals” gives an overview of the local bus signals and which FPGA I/O they are connected
to.

Local bus signals
FPGA I/O I/O Standard Signal

name
External
pull-up
/down

Comment

W4 LVCMOS33 ADS# pull-up Address strobe

Y18 LVCMOS33 ALE pull-down Address latch enable

W5 LVCMOS33 BIGEND# pull-up Big- endian select

W1 LVCMOS33 BLAST# pull-up Burst last

W2 LVCMOS33 BREQi pull-down Bus request in

AA6 LVCMOS33 BREQo pull-up Bus request out

U10 LVCMOS33 BTERM# pull-up Burst terminate

U6 LVCMOS33 CCS# pull-up Configuration register select

W6 LVCMOS33 DACK0# -- DMA channel 0
demand mode acknowledge

U7 LVCMOS33 DACK1# -- DMA channel 1
demand mode acknowledge

W18 LVCMOS33 DEN# pull-up Data enable

W9 LVCMOS33 DP0 pull-down Data parity 0

Y1 LVCMOS33 DP1 pull-down Data parity 1

AA8 LVCMOS33 DP2 pull-down Data parity 2

V9 LVCMOS33 DP3 pull-down Data parity 3

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -15- preliminary

http://www.cesys.com/
http://www.plxtech.com/products/io/pci9056.asp

Local bus signals
FPGA I/O I/O Standard Signal

name
External
pull-up
/down

Comment

Y5 LVCMOS33 DREQ0# pull-up DMA channel 0
demand mode request

V7 LVCMOS33 DREQ1# pull-up DMA channel 1
demand mode request

V18 LVCMOS33 DT/R# pull-up Data transmit / receive

AA4 LVCMOS33 EOT# pull-up End of transfer
for current DMA channel

AA14 LVCMOS33 LAD 0 pull-up Multiplexed data address bus

AB14 LVCMOS33 LAD 1 pull-up Multiplexed data address bus

U12 LVCMOS33 LAD 2 pull-up Multiplexed data address bus

V12 LVCMOS33 LAD 3 pull-up Multiplexed data address bus

W11 LVCMOS33 LAD 4 pull-up Multiplexed data address bus

V11 LVCMOS33 LAD 5 pull-up Multiplexed data address bus

AB9 LVCMOS33 LAD 6 pull-up Multiplexed data address bus

AA9 LVCMOS33 LAD 7 pull-up Multiplexed data address bus

Y10 LVCMOS33 LAD 8 pull-up Multiplexed data address bus

V10 LVCMOS33 LAD 9 pull-up Multiplexed data address bus

W10 LVCMOS33 LAD 10 pull-up Multiplexed data address bus

AA10 LVCMOS33 LAD 11 pull-up Multiplexed data address bus

V13 LVCMOS33 LAD 12 pull-up Multiplexed data address bus

Y13 LVCMOS33 LAD 13 pull-up Multiplexed data address bus

W13 LVCMOS33 LAD 14 pull-up Multiplexed data address bus

AA13 LVCMOS33 LAD 15 pull-up Multiplexed data address bus

U11 LVCMOS33 LAD 16 pull-up Multiplexed data address bus

AB10 LVCMOS33 LAD 17 pull-up Multiplexed data address bus

AB11 LVCMOS33 LAD 18 pull-up Multiplexed data address bus

U13 LVCMOS33 LAD 19 pull-up Multiplexed data address bus

AB15 LVCMOS33 LAD 20 pull-up Multiplexed data address bus

AA15 LVCMOS33 LAD 21 pull-up Multiplexed data address bus

W16 LVCMOS33 LAD 22 pull-up Multiplexed data address bus

Y16 LVCMOS33 LAD 23 pull-up Multiplexed data address bus

AB13 LVCMOS33 LAD 24 pull-up Multiplexed data address bus

V14 LVCMOS33 LAD 25 pull-up Multiplexed data address bus

W14 LVCMOS33 LAD 26 pull-up Multiplexed data address bus

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -16- preliminary

http://www.cesys.com/

Local bus signals
FPGA I/O I/O Standard Signal

name
External
pull-up
/down

Comment

U14 LVCMOS33 LAD 27 pull-up Multiplexed data address bus

V16 LVCMOS33 LAD 28 pull-up Multiplexed data address bus

U16 LVCMOS33 LAD 29 pull-up Multiplexed data address bus

U17 LVCMOS33 LAD 30 pull-up Multiplexed data address bus

AA17 LVCMOS33 LAD 31 pull-up Multiplexed data address bus

V17 LVCMOS33 LBE0# pull-up Local byte enable 0

AA18 LVCMOS33 LBE1# pull-up Local byte enable 1

Y17 LVCMOS33 LBE2# pull-up Local byte enable 2

AB18 LVCMOS33 LBE3# pull-up Local byte enable 3

-- LVCMOS33 LCLK -- Local processor clock (66MHz)

AB4 LVCMOS33 LHOLD pull-down Local hold request

W3 LVCMOS33 LHOLDA pull-down Local hold acknowledge

V6 LVCMOS33 LINTi# pull-up Local interrupt input

Y6 LVCMOS33 LINTo# pull-up Local interrupt output

V5 LVCMOS33 LRESET# pull-up Local bus reset

W8 LVCMOS33 LSERR# pull-up Local system error interrupt output

W17 LVCMOS33 LW/R# pull-up Local write/read

AB8 LVCMOS33 READY# pull-up Ready I/O

V8 LVCMOS33 WAIT# pull-up Wait I/O

This table is for reference only. The sample design, that comes with the board shows how
to use the local bus interface. Users who wish to implement their own local-bus interface
will need a detailed knowledge of the PCI9056 local bus implementation.

ADS#

Indicates a valid address and start of a new Bus access. ADS# asserts for the first clock of
the Bus access.

LCLK

Local clock input. Sourced by onboard 50MHz oscillator.

LHOLD

Asserted to request use of the Local Bus.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -17- preliminary

http://www.cesys.com/

LHOLDA

The external Local Bus Arbiter asserts LHOLDA when bus ownership is granted in
response to LHOLD. The Local Bus should not be granted to the PCI 9056, unless
requested by LHOLD.

LINTo#

Synchronous output that remains asserted as long as the interrupt is enabled and the
interrupt condition exists.

LW/R#

Asserted low for reads and high for writes.

READY#

A Local slave asserts READY# to indicate that Read data on the bus is valid or that a Write
Data transfer is complete. READY# input is not sampled until the internal Wait State
Counter(s) expires (WAIT# output de-asserted).

JTAG Interface

In addition to configuration via PCI, it is possible to download configuration data using a
JTAG interface. The PCIS3BASE is equipped as standard with a 2- row 14- pin connector
to plug in the Parallel Cable IV 1 from XilinxTM. The JTAG interface is not only suitable to
download designs for testing purposes but enables the user to check a running design by
the help of software tools provided by XilinxTM, for instance ChipScope2.

CON1 JTAG connector
Pin Comment

Pin 1, 3, 5, 7, 9, 11, 13 GND
Pin 2 +2,5 Volt
Pin 4 TMS

Pin 6 TCK

Pin 8 TDO

Pin 10 TDI

Pin 12, 14 Not connected

Attention: Don’t connect JTAG adapters that use 3,3 Volt signalling. The FPGA only
1 Parallel Cable IV is not included
2 ChipScope is not included. A demo version is available at the XilinxTM webpage.

(http://www.xilinx.com/ise/optional_prod/cspro.htm)

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -18- preliminary

http://www.cesys.com/
http://www.xilinx.com/ise/optional_prod/cspro.htm

accepts 2,5 Volt signal levels and may get damaged otherwise.

Memory interface

PCIS3BASE is equipped with 32 MByte of high-speed dynamic random access memory by
usage of the 256Mbit (4Mx16x4banks) component MT48LC16M16A2P-75 from MICRONTM

Technology, Inc.

Memory Interface
Signal name FPGA I/O ball Comment

A0 K20 Multiplexed row/column address input

A1 G22 Multiplexed row/column address input

A2 G19 Multiplexed row/column address input

A3 G17 Multiplexed row/column address input

A4 G18 Multiplexed row/column address input

A5 G21 Multiplexed row/column address input

A6 K19 Multiplexed row/column address input

A7 K21 Multiplexed row/column address input

A8 L17 Multiplexed row/column address input

A9 L19 Multiplexed row/column address input

A10 K22 Multiplexed row/column address input

A11 L21 Multiplexed row/column address input

A12 L22 Multiplexed row/column address input

BA0 L20 Bank address input

BA1 L18 Bank address input

DQ0 Y21 Data input/output

DQ1 W21 Data input/output

DQ2 W19 Data input/output

DQ3 V21 Data input/output

DQ4 V19 Data input/output

DQ5 U20 Data input/output

DQ6 U18 Data input/output

DQ7 T21 Data input/output

DQ8 T22 Data input/output

DQ9 U19 Data input/output

DQ10 U21 Data input/output

DQ11 V20 Data input/output

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -19- preliminary

http://www.cesys.com/
http://download.micron.com/pdf/datasheets/dram/sdram/256MSDRAM.pdf

Memory Interface
Signal name FPGA I/O ball Comment

DQ12 V22 Data input/output

DQ13 W20 Data input/output

DQ14 W22 Data input/output

DQ15 Y22 Data input/output

CS# N19 Chip select input (registered LOW)

WE# R18 Write enable (registered LOW)

CAS# N22 Column address strobe (registered LOW)

RAS# N20 Row address strobe (registered LOW)

CKE# N21 Clock enable input (registered LOW)

Clock Y11 SDRAM Clock input

DQMH T17 Input/output data mask

DQML T18 Input/output data mask

SPI Flash

In addition to 32MByte dynamic SDRAM, 4MBit nonvolatile memory in form of a SPI Flash
M25P40-VMN6P from STMicroelectronis are available. This flash memory is not intended
for storing FPGA configuration bitstreams (no connection to FPGA configuration logic is
available) but to give the user the opportunity to store board specific data directly onboard.
The following table gives information about IO usage:

4MBit SPI Flash M25P40
Signal name FPGA I/O ball Comment
FLASH_#CS F20 Chip Select

FLASH_SO F19 Serial Data Output

FLASH_SI M22 Serial Data Input

FLASH_SCK F21 Serial Clock

FLASH_#HOLD -- Active-Low Hold signal,
4k7 pull-up- resistor to 3.3Volt

FLASH_#WP -- Active-Low Write Protect signal,
4k7 pull-up- resistor to 3.3Volt

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -20- preliminary

http://www.cesys.com/
http://www.numonyx.com/Documents/Datasheets/M25P40.pdf

FPGA design

Introduction

The PCIS3BASE-Board comes with the complete source code of two FPGA-designs. The
one, which demonstrates the implementation of a system-on-chip (SOC) with access to all
peripherals over PCI, is called “pcis3base”. The other one demonstrates high speed data
transfers from and to the FPGA over PCI and is called “performance_test”.

For own applications you will have to change some options of the project properties if you
want to download your FPGA design with the CESYS software API-functions LoadBIN()
and ProgramFPGA(). A bitstream in the “*.bin”-format is needed for downloading, but in
the ISE development environment the generation of this file is disabled by default. You will
have to right click on process “generate programming file” then select properties=>general
options and check “create binary configuration file”:

There are some control signals of the PLX PCI controller routed to FPGA pins, but not
used in FPGA designs. These signals must not be pulled into any direction! Therefore you

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -21- preliminary

Figure 6: ISE Generate Programming File Properties (Gen. Opt.)

http://www.cesys.com/

will have to change properties=>configuration options “unused iob pins” to “float”:

After ProgramFPGA() is called and the FPGA design is completely downloaded, the pin
LRESET# (note: the postfix # means, that the signal is active low) is automatically pulsed
(HIGH/LOW/HIGH). This signal can be used for resetting the FPGA design. The API-
function ResetFPGA() can be called to initiate a pulse on LRESET# at a user given time.

The following sections will give you a brief introduction about the data transfer from and to
the FPGA over the PLX PCI controller local bus, the WISHBONE interconnection
architecture and the provided peripheral controllers.

The PCIS3BASE uses J mode, direct slave, 32-bit single read/write and DMA single and
continuous burst cycles for transferring data.

For further information about the PLX local bus see PCI 9056BA Data Book and about the
WISHBONE architecture see specification B.3 (wbspec_b3.pdf).

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -22- preliminary

Figure 7: ISE Generate Programming File Properties (Config. Opt.)

http://www.cesys.com/
http://www.opencores.org/projects.cgi/web/wishbone/wishbone
http://www.plxtech.com/products/io/pci9056.asp

FPGA source code copyright information

This source code is copyrighted by CESYS GmbH / GERMANY, unless otherwise noted.

FPGA source code license

THIS SOURCECODE IS NOT FREE! IT IS FOR USE TOGETHER WITH THE CESYS
PCIS3BASE PCI CARD ONLY! YOU ARE NOT ALLOWED TO MODIFY AND DISTRIBUTE
OR USE IT WITH ANY OTHER HARDWARE, SOFTWARE OR ANY OTHER KIND OF
ASIC OR PROGRAMMABLE LOGIC DESIGN WITHOUT THE EXPLICIT PERMISSION
OF THE COPYRIGHT HOLDER!

Disclaimer of warranty

THIS SOURCECODE IS DISTRIBUTED IN THE HOPE THAT IT WILL BE USEFUL, BUT
THERE IS NO WARRANTY OR SUPPORT FOR THIS SOURCECODE. THE COPYRIGHT
HOLDER PROVIDES THIS SOURCECODE "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THIS
SOURCECODE IS WITH YOU. SHOULD THIS SOURCECODE PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

IN NO EVENT WILL THE COPYRIGHT HOLDER BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THIS SOURCECODE (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THIS
SOURCECODE TO OPERATE WITH ANY OTHER SOFTWARE-PROGRAMS,
HARDWARE-CIRCUITS OR ANY OTHER KIND OF ASIC OR PROGRAMMABLE LOGIC
DESIGN), EVEN IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -23- preliminary

http://www.cesys.com/

Design “pcis3base”

An on-chip-bus system is implemented in this design. The VHDL source code shows you,
how to build a 32-Bit WISHBONE based shared bus architecture. All devices of the
WISHBONE system support only SINGLE READ / WRITE Cycles. Files and modules
having something to do with the WISHBONE system are labeled with the prefix “wb_”. The
WISHBONE master is labeled with the additional prefix “ma_” and the slaves are labeled
with “sl_”.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -24- preliminary

Figure 8: WISHBONE system overview

IN
TE

R
C

O
N

SYSCON

SLAVE:
SDRAM

SLAVE:
FLASH

SLAVE:
GPIO

SLAVE:
TIMER

MASTER:
PLX

http://www.cesys.com/

Files and modules

src/wishbone.vhd:

A package containing datatypes, constants, components, signals and information for
software developers needed for the WISHBONE system. You will find C/C++-style
“#define”s with important addresses and values to copy and paste into your software
source code after VHDL comments (“- -”).

src/pcis3base_top.vhd:

This is the top level entity of the design. The WISHBONE components are instantiated
here. The internal VHDL signals are mapped to the 100 pin connector of the general
purpose I/O plug in boards, so the pinout of the user constraints file does not need to be
changed for other plug in boards. You will find a table with the column “HDL Pin” and some
pin explanations in the plug in board documentation at the end of this document. This table
associates the pin numbers of the FPGA and the 100 pin connector with the bidirectional
VHDL data bus port “pin_gpiomoduleport_io”.

src/wb_syscon.vhd:

This entity is a wrapper for BUFG_CLK0_FB_SUBM.vhd and provides the WISHBONE
system signals RST and CLK and the external SDRAM clock. It uses LRESET# and
SYSTEMCLOCK as external reset and clock source.

src/wb_intercon.vhd:

All WISHBONE devices are connected to this shared bus interconnection logic. Some
MSBs of the address are used to select the appropriate slave.

src/wb_ma_plx.vhd:

This is the entity of the WISHBONE master, which converts the local bus protocol for 32-Bit
single read/write-cycles of the PLX PCI controller into a WISHBONE conform one.

src/wb_sl_sdr.vhd:

The module encapsulates the low level SDRAM controller sdr_ctrl.vhd. The integrated
command register supports NOP, PRECHARGE, LOAD MODE REGISTER and NORMAL
OPERATION commands for SDRAM initialization. Please see the software code samples
and Micron SDRAM datasheet (256MSDRAM.pdf) for details on SDRAM initialization. The
integrated timer starts the AUTO REFRESH cycles automatically.

src/wb_sl_flash.vhd:

The module encapsulates the low level FLASH controller flash_ctrl.vhd. The integrated

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -25- preliminary

http://www.cesys.com/

command register supports the BULK ERASE command, which erases the whole memory
by programming all bits to '1'. In write cycles the bit values can only be changed from '1' to
'0'. That means, that it is not allowed to have a write access to the same address twice
without erasing the whole flash before. The read access is as simple as reading from any
other WISHBONE device. Please see the SPI-FLASH data sheet (m25p40.pdf) for details
on programming and erasing.

src/wb_sl_gpio.vhd:

This entity shows you, how to control the dual 8-bit bus transceiver circuits (see
74FCT162245T_Datasheet.pdf for details) on the plug in board and use them as general
purpose I/Os. The four LEDs and the 28 bidirectional I/Os at the internal 34-pin connector
are controlled by this module as well.

src/wb_sl_timer.vhd:

A 32-bit timer with programmable period (20 ns steps). The timer starts running if the
period is not null. It generates an interrupt at overflow time. The interrupt output is asserted
as long as the interrupt is not acknowledged.

src/sdr_ctrl.vhd:

The low level SDRAM controller for the 32MB/16-bit SDRAM. It handles the basic timing
for the SDRAM commands. It works at 50 MHz with a fixed burst length of two and uses
AUTO PRECHARGE functionality.

src/flash_ctrl.vhd:

The low level FLASH controller for the 4MBit SPI FLASH memory. It supports reading and
writing of four bytes of data at one time as well as erasing the whole memory.

src/BUFG_CLK0_FB_SUBM.vhd :

A module with two SPARTAN-3 DCMs for external and internal clock deskew taken from
XILINX application note 462 “Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs”
(see xapp462.pdf, xapp462_vhdl.zip).

pcis3base.ise:

Project file for Xilinx ISE version 8.2.03i.

pcis3base.ucf:

User constraint file with timing and pinout constraints.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -26- preliminary

http://www.cesys.com/

Module-hierarchy
Package wishbone
Entity pcis3base_top

 Entity wb_syscon
 Entity BUFG_CLK0_FB_SUBM

 Entity wb_intercon
 Entity wb_ma_plx
 Entity wb_sl_sdr

 Entity sdr_ctrl
 Entity wb_sl_flash

 Entity flash_ctrl
 Entity wb_sl_gpio
 Entity wb_sl_timer

Bus transactions

The API-functions ReadRegister(), WriteRegister() lead to direct slave single
cycles and ReadBlock(), WriteBlock() to DMA transfers. Bursting is not allowed in
the WISHBONE demo application. You can find details on enabling/disabling the local bus
continuous burst mode in the software API and the source code of the software examples.
There is no difference in the PLX local bus cycles “direct slave” and “DMA”, if continuous
burst is disabled for DMA transfers. The address is incremented automatically in block
transfers.

Local bus signals driven by the PLX PCI controller:
• LW/R#: local bus write/not read, indicates, if a read or write cycle is in progress
• ADS#: address strobe, indicates a valid address, if asserted low by PLX

Local bus signals driven by the FPGA:
• READY#: handshake signal, FPGA indicates a successful data transfer for writing and

valid data on bus for reading by asserting this signal low, FPGA can insert wait states by
delaying this signal

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -27- preliminary

http://www.cesys.com/

Local bus signal driven by the PLX PCI controller and the FPGA:
• LAD[31:0]: 32-bit multiplexed address/data bus, FPGA drives valid data on this bus in

read cycles while asserting the READY# signal low, the FPGA LAD[31:0] output drivers
have to be in a high impedance state at all other times

The PLX local bus protocol is converted into a WISHBONE based one. So the PLX
becomes a master device in the internal WISHBONE architecture. Input signals for the
WISHBONE master are labeled with the postfix “_I”, output signals with “_O”.

WISHBONE signals driven by the master:
• STB_O: strobe, qualifier for the other output signals of the master, indicates valid data

and control signals
• WE_O: write enable, indicates, if a write or read cycle is in progress
• ADR_O[31:0]: 32-bit address bus, the PLX local bus uses BYTE addressing, but the

WISHBONE system uses DWORD (32-Bit) addressing. The address is shifted two bits
inside the WISHBONE master module

• DAT_O[31:0]: 32-bit data out bus for data transportation from master to slaves

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -28- preliminary

Figure 9: Bus transactions with ReadRegister() and ReadBlock()

LAD[31:0]

CLK

LW/R#

ADS#

READY#

A

STB_O

WE_O

ADR_O[31:0]

DAT_O[31:0]

DAT_I[31:0]

ACK_I

A>>2

D

A>>2

D

FPGA drives LAD[31:0]



PL
X

Lo
ca

l B
us

W
IS

H
B

O
N

E
M

AS
TE

R

http://www.cesys.com/

WISHBONE signals driven by slaves:
• DAT_I[31:0]: 32-bit data in bus for data transportation from slaves to master
• ACK_I: handshake signal, slave devices indicate a successful data transfer for writing

and valid data on bus for reading by asserting this signal, slaves can insert wait states by
delaying this signal, this delay leads to a delay of the READY# signal on the local bus
side

The signals LHOLD (local hold request) driven by PLX and LHOLDA (local hold
acknowledge) driven by the FPGA are used for local bus arbitration. LHOLD can be simply
looped back to LHOLDA, because the PLX PCI controller is the one and only master on
the local bus.

The WISHBONE signals in these illustrations and explanations are shown as simple bit
types or bit vector types, but in the VHDL code these signals could be encapsulated in
extended data types like arrays or records.

Example:
...
port map
(

...
ACK_I => intercon.masters.slave(2).ack,

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -29- preliminary

Figure 10: Bus transactions with WriteRegister() and WriteBlock()

LAD[31:0]

CLK

LW/R#

ADS#

READY#

A

STB_O

WE_O

ADR_O[31:0]

DAT_O[31:0]

DAT_I[31:0]

ACK_I

D

D

A>>2

D

A>>2

D



PL
X

Lo
ca

l B
us

W
IS

H
B

O
N

E
M

AS
TE

R

http://www.cesys.com/

...

Port ACK_I is connected to signal ack of element 2 of array slave, of record masters, of
record intercon.

PCI interrupt

The FPGA has the possibility to cause PCI interrupts. The interrupt state can be checked
by calling the API-function WaitForInterrupt(). If the FPGA asserts the LINTi# (local
interrupt input) signal low, then the function returns immediately else it returns after the
programmed timeout period. The return value shows you if an interrupt event has been
occurred or not. The software has to acknowledge an interrupt, i. e. by writing to a special
address. The FPGA deasserts the LINTi# pin after recognizing the acknowledgment. The
interrupt functionality is demonstrated by the slave timer module.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -30- preliminary

http://www.cesys.com/

Design “performance_test”

Small and simple design to achieve maximum data rates over PCI.

!!!Attention!!! Do not drive any pins of the internal 34 pol. expansion connector J21 while
this design is loaded! The FPGA could be damaged because these pins are driven by
FPGA! Remove everything but measurement devices like oscilloscopes or logic analyzers!

The important local bus handshake signals are routed to the internal connector to give you
an idea, how the bus protocol works.

34 pol. internal expansion connector (J21)
Pin 1 RST

Pin 2 CLK

Pin 3 LHOLD

Pin 4 LHOLDA

Pin 5 ADS#

Pin 6 BLAST#

Pin 7 READY#

Pin 8 LW/R#

Files and modules

src/performance_test.vhd:

The module handles the local bus protocol as fast as possible and buffers the last value
transferred to the FPGA.

performance_test.ise:

Project file for Xilinx ISE version 8.2.03i.

performance_test.ucf:

User constraint file with timing and pinout constraints.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -31- preliminary

http://www.cesys.com/

Bus transactions

This design supports the local bus continuous burst transfers as well as the single cycle
transfers. For burst transfers the additional signal BLAST# (burst last) is needed, which is
driven by the PLX PCI controller. If this signal is asserted low, the PLX indicates the last
LWORD it wants to transmit or receive. The FPGA can use the READY# signal for inserting
wait states like in the single cycle mode. Furthermore the FPGA can drive the additional
signal BTERM# (burst terminate) to break the current burst transfer and request a new
address cycle. Note that the use of BTERM# is not demonstrated in “performance_test”,
because it would decrease the performance.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -32- preliminary

Figure 11: Bus transactions with ReadBlock() and WriteBlock() in continous burst mode

LAD[31:0]

CLK

LW/R#

ADS#

READY#

A D0



BLAST#

D1 D2 DnDn-1

LAD[31:0]

CLK

LW/R#

ADS#

READY#

A

FPGA drives LAD[31:0]



BLAST#

D0 D1 DnDn-1

FP
G

A
 =

>
PL

X

PL
X

=>
 F

PG
A

http://www.cesys.com/

Software

Introduction

The UDK (Unified Development Kit) is used to allow developers to communicate with
Cesys's USB and PCI(e) devices. Older releases were just a release of USB and PCI
drivers plus API combined with some shared code components. The latest UDK combines
all components into one single C++ project and offers interfaces to C++, C and for .NET
(Windows only). The API has functions to mask-able enumeration, unique device
identification (runtime), FPGA programming and 32bit bus based data communication. PCI
devices have additional support for interrupts.

Changes to previous versions

Beginning with release 2.0, the UDK API is a truly combined interface to Cesys's USB and
PCI devices. The class interface from the former USBUni and PCIBase API's was saved at
a large extend, so porting applications from previous UDK releases can be done without
much work.

Here are some notes about additional changes:

• Complete rewrite
• Build system cleanup, all UDK parts (except .NET) are now part of one large project
• 64 bit operating system support
• UDK tools combined into one application (UDKLab)
• Updated to latest PLX SDK (6.31)
• Identical C, C++ and .NET API interface (.NET Windows only)⇒

• Different versions of components collapsed to one UDK version
• Windows only:
• Microsoft Windows Vista / Seven(7) support (PCI drivers are not released for Seven at

the moment)
• Driver installation / update is done by an installer now
• Switched to Microsoft's generic USB driver (WinUSB)
• Support moved to Visual Studio 2005, 2008 and 2010(experimental), older Visual

Studio versions are not supported anymore
• Linux only:
• Revisited USB driver, tested on latest Ubuntu distributions (32/64)
• Simpler USB driver installation

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -33- preliminary

http://www.cesys.com/

Windows

Requirements

To use the UDK in own projects, the following is required:

• Installed drivers
• Microsoft Visual Studio 2005 or 2008; 2010 is experimental
• CMake 2.6 or higher ⇒ http://www.cmake.org
• wxWidgets 2.8.10 or higher (must be build separately) ⇒ http://www.wxwidgets.org

[optionally, only if UDKLab should be build]

Driver installation

The driver installation is part of the UDK installation but can run standalone on final
customer machines without the need to install the UDK itself. During installation, a choice
of drivers to install can be made, so it is not necessary to install i.e. PCI drivers on
machines that should run USB devices only or vice versa. If USB drivers get installed on a
machine that has a pre-2.0 UDK driver installation, we prefer the option for USB driver
cleanup offered by the installer, this cleanly removes all dependencies of the old driver
installation.

Note: There are separate installers for 32 and 64 bit systems.

Important: At least one device should be present when installing the drivers !

Build UDK

Prerequisites

The most components of the UDK are part of one large CMake project. There are some
options that need to be fixed in msvc.cmake inside the UDK installation root:

• BUILD_UI_TOOLS If 0, UDKLab will not be part of the subsequent build procedure, if 1 it
will. This requires an installation of an already built wxWidgets.

• WX_WIDGETS_BASE_PATH Path to wxWidgets build root, only needed if
BUILD_UI_TOOLS is not 0.

• USE_STATIC_RTL If 0, all projects are build against the dynamic runtime libraries. This
requires the installation of the appropriate Visual Studio redistributable pack on every
machine the UDK is used on. Using a static build does not create such dependencies,
but will conflict with the standard wxWidgets build configuration.

Solution creation and build

The preferred way is to open a command prompt inside the installation root of the UDK,

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -34- preliminary

http://www.cesys.com/
http://www.wxwidgets.org/
http://www.cmake.org/

lets assume to use c:\\udkapi.

c:
cd \udkapi

CMake allows the build directory separated to the source directory, so it's a good idea to do
it inside an empty sub-directory:

mkdir build
cd build

The following code requires an installation of CMake and at least one supported Visual
Studio version. If CMake isn't included into the PATH environment variable, the path must
be specified as well:

cmake ..

This searches the preferred Visual Studio installation and creates projects for it. Visual
Studio Express users may need to use the command prompt offered by their installation. If
multiple Visual Studio versions are installed, CMake's command parameter '-G' can be
used to specify a special one, see CMake's documentation in this case. This process
creates the solution files inside c:\\udkapi\\build. All subsequent tasks can be done in Visual
Studio (with the created solution), another invocation of cmake isn't necessary under
normal circumstances.

Important: The UDK C++ API must be build with the same toolchain and build flags like
the application that uses it. Otherwise unwanted side effects in exception handling will
occur ! (See example in Add project to UDK build).

Info: It is easy to create different builds with different Visual Studio versions by creating
different build directories and invoke CMake with different '-G' options inside them:

c:
cd \udkapi
mkdir build2005
cd build2005
cmake -G"Visual Studio 8 2005" ..
cd ..
mkdir build2008
cd build2008
cmake -G"Visual Studio 9 2008" ..

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -35- preliminary

http://www.cesys.com/

Linux

There are too many distributions and releases to offer a unique way to the UDK installation.
We've chosen to work with the most recent Ubuntu release, 9.10 at the moment. All
commands are tested on an up to date installation and may need some tweaking on other
systems / versions.

Requirements
• GNU C++ compiler toolchain
• zlib development libraries
• CMake 2.6 or higher ⇒ http://www.cmake.org
• wxWidgets 2.8.10 or higher ⇒ http://www.wxwidgets.org [optionally, only if UDKLab

should be build]
sudo apt-get install build-essential cmake zlib1g-dev libwxbase2.8-dev
libwxgtk2.8-dev

The Linux UDK comes as gzip'ed tar archive, as the Windows installer won't usually work.
The best way is to extract it to the home directory:

tar xzvf UDKAPI-x.x.tgz ~/

This creates a directory /home/[user]/udkapi[version] which is subsequently called udkroot.
The following examples assume an installation root in ~/udkapi2.0.

Important: Commands sometimes contain a ` symbol, have attention to use the right one,
refer to command substitution if not familiar with.

Drivers

The driver installation on Linux systems is a bit more complicated than on Windows
systems. The drivers must be build against the installed kernel version. Updating the kernel
requires a rebuild.

USB

As the USB driver is written by Cesys, the installation procedure is designed to be as
simple and automated as possible. The sources and support files reside in directory
<udkroot>/drivers/linux/usb. Just go there and invoke make.

cd ~/udkapi2.0/drivers/linux/usb
make

If all external dependencies are met, the build procedure should finish without errors.
Newer kernel releases may change things which prevent success, but it is out of the scope
of our possibilities to be always up-to-date with latest kernels. To install the driver, the

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -36- preliminary

http://www.cesys.com/
http://www.wxwidgets.org/
http://www.cmake.org/

following command has to be done:

sudo make install

This will do the following things:

• Install the kernel module inside the module library path, update module dependencies
• Install a new udev rule to give device nodes the correct access rights (0666)

(/etc/udev/rules.d/99-ceusbuni.rules)
• Install module configuration file (/etc/dev/modprobe.d/ceusbuni.conf)
• Start module

If things work as intended, there must be an entry /proc/ceusbuni after this procedure.

The following code will completely revert the above installation (called in same directory):

sudo make remove

The configuration file, /etc/modprobe.d/ceusbuni.conf, offers two simple options (Read the
comments in the file):

• Enable kernel module debugging
• Choose between firmware which automatically powers board peripherals or not

Changing these options require a module reload to take affect.

PCI

The PCI drivers are not created or maintained by Cesys, they are offered by the
manufacturer of the PCI bridges that were used on Cesys PCI(e) boards. So problems
regarding them can't be handled or supported by us.

Important: If building PlxSdk components generate the following error / warning:

/bin/sh [[: not found

Here's a workaround: The problem is Ubuntu's default usage of dash as sh, which can't
handle command [[. Replacing dash with bash is accomplished by the following commands
that must be done as root:

sudo rm /bin/sh
sudo ln -s /bin/bash /bin/sh

Installation explained in detail:

PlxSdk decompression:

cd ~/udkapi2.0/drivers/linux
tar xvf PlxSdk.tar

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -37- preliminary

http://www.cesys.com/

Build drivers:

cd PlxSdk/Linux/Driver
PLX_SDK_DIR=`pwd`/../../ ./buildalldrivers

Loading the driver manually requires a successful build, it is done using the following
commands:

cd ~/udkapi2.0/drivers/linux/PlxSdk
sudo PLX_SDK_DIR=`pwd` Bin/Plx_load Svc

PCI based boards like the PCIS3Base require the following driver:

sudo PLX_SDK_DIR=`pwd` Bin/Plx_load 9056

PCIe based boards like the PCIeV4Base require the following:

sudo PLX_SDK_DIR=`pwd` Bin/Plx_load 8311

Automation of this load process is out of the scope of this document.

Build UDK

Prerequisites

The whole UDK will be build using CMake, a free cross platform build tool. It creates
dynamic Makefiles on unix compatible platforms.

The first thing should be editing the little configuration file linux.cmake inside the installation
root of the UDK. It contains the following options:

• BUILD_UI_TOOLS If 0 UDKLab isn't build, if 1 UDKLab is part of the build, but requires
a compatible wxWidgets installation.

• CMAKE_BUILD_TYPE Select build type, can be one of Debug, Release,
RelWithDebInfo, MinSizeRel. If there should be at least 2 builds in parallel, remove this
line and specify the type using command line option -DCMAKE_BUILD_TYPE=….

Makefile creation and build

Best usage is to create an empty build directory and run cmake inside of it:

cd ~/udkapi2.0
mkdir build
cd build
cmake ..

If all external dependencies are met, this will finish creating a Makefile. To build the UDK,
just invoke make:

make

Important: The UDK C++ API must be build with the same toolchain and build flags like

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -38- preliminary

http://www.cesys.com/

the application that uses it. Otherwise unwanted side effects in exception handling will
occur ! (See example in Add project to UDK build).

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -39- preliminary

http://www.cesys.com/

Use APIs in own projects

C++ API
• Include file: udkapi.h
• Library file:
• Windows: udkapi_vc[ver]_[arch].lib, [ver] is 8, 9, 10, [arch] is x86 or amd64, resides in

lib/[build]/
• Linux: libusbapi.so, resides in lib/

• Namespace: ceUDK

As this API uses exceptions for error handling, it is really important to use the same
compiler and build settings which are used to build the API itself. Otherwise exception
based stack unwinding may cause undefined side effects which are really hard to fix.

Add project to UDK build

A simple example would be the following. Let's assume there's a source file
mytest/mytest.cpp inside UDK's root installation. To build a mytestexe executable with UDK
components, those lines must be appended:

add_executable(mytestexe mytest/mytest.cpp)
target_link_libraries(mytestexe ${UDKAPI_LIBNAME})

Rebuilding the UDK with these entries in Visual Studio will create a new project inside the
solution (and request a solution reload). On Linux, calling make will just include mytestexe
into the build process.

C API
• Include file: udkapic.h
• Library file:
• Windows: udkapic_vc[ver]_[arch].lib, [ver] is 8, 9, 10, [arch] is x86 or amd64, resides in

lib/[build]/
• Linux: libusbapic.so, resides in lib/

• Namespace: Not applicable

The C API offers all functions from a dynamic link library (Windows: .dll, Linux: .so) and
uses standardized data types only, so it is usable in a wide range of environments.

Adding it to the UDK build process is nearly identical to the C++ API description, except
that ${UDKAPIC_LIBNAME} must be used.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -40- preliminary

http://www.cesys.com/

.NET API
• Include file: -
• Library file: udkapinet.dll, resided in bin/[build]
• Namespace: cesys.ceUDK

The .NET API, as well as it example application is separated from the normal UDK build.
First of all, CMake doesn't have native support .NET, as well as it is working on Windows
systems only. Building it has no dependency to the standard UDKAPI, all required sources
are part of the .NET API project. The Visual Studio solution is located in directory dotnet/
inside the UDK installation root. It is a Visual Studio 8/2005 solution and should be
convertible to newer releases. The solution is split into two parts, the .NET API in mixed
native/managed C++ and an example written in C#.

To use the .NET API in own projects, it's just needed to add the generated DLL
udkapinet.dll to the projects references.

API Functions in detail

Notice: To prevent overhead in most usual scenarios, the API does not serialize calls in
any way, so the API user is responsible to serialize call if used in a multi-threaded context !

Notice: The examples for .NET in the following chapter are in C# coding style.

API Error handling

Error handling is offered very different. While both C++ and .NET API use exception
handling, the C API uses a classical return code / error inquiry scheme.

C++ and .NET API

UDK API code should be embedded inside a try branch and exceptions of type
ceException must be caught. If an exception is raised, the generated exception object
offers methods to get detailed information about the error.

C API

All UDK C API functions return either CE_SUCCESS or CE_FAILED. If the latter is
returned, the functions below should be invoked to get the details of the error.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -41- preliminary

http://www.cesys.com/

Methods/Functions
GetLastErrorCode

API Code
C++ unsigned int ceException::GetErrorCode()

C unsigned int GetLastErrorCode()
.NET uint ceException.GetLastErrorCode()

Returns an error code which is intended to group the error into different kinds. It can be
one of the following constants:

Error code Kind of error
ceE_TIMEOUT Errors with any kind of timeout.
ceE_IO_ERROR IO errors of any kind, file, hardware, etc.
ceE_UNEXP_HW_BEH Unexpected behavior of underlying hardware (no response, wrong data).
ceE_PARAM Errors related to wrong call parameters (NULL pointers, …).
ceE_RESOURCE Resource problem, wrong file format, missing dependency.
ceE_API Undefined behavior of underlying API.
ceE_ORDER Wrong order calling a group of code (i.e. deinit()→init()).
ceE_PROCESSING Occurred during internal processing of anything.
ceE_INCOMPATIBLE Not supported by this device.
ceE_OUTOFMEMORY Failure allocating enough memory.

GetLastErrorText

API Code
C++ const char *ceException::GetLastErrorText()

C const char *GetLastErrorText()
.NET string ceException.GetLastErrorText()

Returns a text which describes the error readable by the user. Most of the errors contain
problems meant for the developer using the UDK and are rarely usable by end users. In
most cases unexpected behavior of the underlying operation system or in data transfer is
reported. (All texts are in english.)

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -42- preliminary

http://www.cesys.com/

Device enumeration

The complete device handling is done by the API internally. It manages the resources of all
enumerated devices and offers either a device pointer or handle to API users. Calling Init()
prepares the API itself, while DeInit() does a complete cleanup and invalidates all device
pointers and handles.

To find supported devices and work with them, Enumerate() must be called after Init().
Enumerate() can be called multiple times for either finding devices of different types or to
find newly plugged devices (primary USB at the moment). One important thing is the
following: Enumerate() does never remove a device from the internal device list and so
invalidate any pointer, it just add new ones or does nothing, even if a USB device is
removed. For a clean detection of a device removal, calling DeInit(), Init() and Enumerate()
(in exactly that order) will build a new, clean device list, but invalidates all previous created
device pointers and handles.

To identify devices in a unique way, each device gets a UID, which is a combination of
device type name and connection point, so even after a complete cleanup and new
enumeration, devices can be exactly identified by this value.

Methods/Functions
Init

API Code
C++ static void ceDevice::Init()

C CE_RESULT Init()
.NET static void ceDevice.Init()

Prepare internal structures, must be the first call to the UDK API. Can be called after
invoking DeInit() again, see top of this section.

DeInit

API Code
C++ static void ceDevice::DeInit()

C CE_RESULT DeInit()
.NET static void ceDevice.DeInit()

Free up all internal allocated data, there must no subsequent call to the UDK API after this
call, except Init() is called again. All retrieved device pointers and handles are invalid after
this point.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -43- preliminary

http://www.cesys.com/

Enumerate

API Code
C++ static void ceDevice::Enumerate(ceDevice::ceDeviceType DeviceType)

C CE_RESULT Enumerate(unsigned int DeviceType)
.NET static void ceDevice.Enumerate(ceDevice.ceDeviceType DeviceType)

Search for (newly plugged) devices of the given type and add them to the internal list.
Access to this list is given by GetDeviceCount() / GetDevice(). DeviceType can be one of
the following:

DeviceType Description
ceDT_ALL All UDK supported devices.
ceDT_PCI_ALL All UDK supported devices on PCI bus.
ceDT_PCI_PCIS3BASE Cesys PCIS3Base
ceDT_PCI_DOB DOB (*)
ceDT_PCI_PCIEV4BASE Cesys PCIeV4Base
ceDT_PCI_RTC RTC (*)
ceDT_PCI_PSS PSS (*)
ceDT_PCI_DEFLECTOR Deflector (*)
ceDT_USB_ALL All UDK supported devices.
ceDT_USB_USBV4F Cesys USBV4F
ceDT_USB_EFM01 Cesys EFM01
ceDT_USB_MISS2 MISS2 (*)
ceDT_USB_CID CID (*)
ceDT_USB_USBS6 Cesys USBS6

* Customer specific devices.

GetDeviceCount

API Code
C++ static unsigned int ceDevice::GetDeviceCount()

C CE_RESULT GetDeviceCount(unsigned int *puiCount)
.NET static uint ceDevice.GetDeviceCount()

Return count of devices enumerated up to this point. May be larger if rechecked after
calling Enumerate() in between.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -44- preliminary

http://www.cesys.com/

GetDevice

API Code
C++ static ceDevice *ceDevice::GetDevice(unsigned int uiIdx)

C CE_RESULT GetDevice(unsigned int uiIdx, CE_DEVICE_HANDLE *pHandle)
.NET static ceDevice ceDevice.GetDevice(uint uiIdx)

Get device pointer or handle to the device with the given index, which must be smaller than
the device count returned by GetDeviceCount(). This pointer or handle is valid up to the
point DeInit() is called.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -45- preliminary

http://www.cesys.com/

Information gathering

The functions in this chapter return valuable information. All except GetUDKVersionString()
are bound to devices and can be used after getting a device pointer or handle from
GetDevice() only.

Methods/Functions
GetUDKVersionString

API Code
C++ static const char *ceDevice::GetUDKVersionString()

C const char *GetUDKVersionString()
.NET static string ceDevice.GetUDKVersionString()

Return string which contains the UDK version in printable format.

GetDeviceUID

API Code
C++ const char *ceDevice::GetDeviceUID()

C CE_RESULT GetDeviceUID(CE_DEVICE_HANDLE Handle, char *pszDest, unsigned
int uiDestSize)

.NET string ceDevice.GetDeviceUID()

Return string formatted unique device identifier. This identifier is in the form of
type@location while type is the type of the device (i.e. EFM01) and location is the position
the device is plugged to. For PCI devices, this is a combination of bus, slot and function
(PCI bus related values) and for USB devices a path from device to root hub, containing
the port of all used hubs. So after re-enumeration or reboot, devices on the same machine
can be identified exactly.

Notice C API: pszDest is the buffer were the value is stored to, it must be at least of size
uiDestSize.

GetDeviceName

API Code
C++ const char *ceDevice::GetDeviceName()

C CE_RESULT GetDeviceName(CE_DEVICE_HANDLE Handle, char *pszDest, unsigned
int uiDestSize)

.NET string ceDevice.GetDeviceName()

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -46- preliminary

http://www.cesys.com/

Return device type name of given device pointer or handle.

Notice C API: pszDest is the buffer were the value is stored to, it must be at least of size
uiDestSize.

GetBusType

API Code
C++ ceDevice::ceBusType ceDevice::GetBusType()

C CE_RESULT GetBusType(CE_DEVICE_HANDLE Handle, unsigned int *puiBusType)
.NET ceDevice.ceBusType ceDevice.GetBusType()

Return type of bus a device is bound to, can be any of the following:

Constant Bus
ceBT_PCI PCI bus
ceBT_USB USB bus

GetMaxTransferSize

API Code
C++ unsigned int ceDevice::GetMaxTransferSize()

C CE_RESULT GetMaxTransferSize(CE_DEVICE_HANDLE Handle, unsigned int
*puiMaxTransferSize)

.NET uint ceDevice.GetMaxTransferSize()

Return count of bytes that represents the maximum in one transaction, larger transfers
must be split by the API user.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -47- preliminary

http://www.cesys.com/

Using devices

After getting a device pointer or handle, devices can be used. Before transferring data to or
from devices, or catching interrupts (PCI), devices must be accessed, which is done by
calling Open(). All calls in this section require an open device, which must be freed by
calling Close() after usage.

Either way, after calling Open(), the device is ready for communication. As of the fact, that
Cesys devices usually have an FPGA on the device side of the bus, the FPGA must be
made ready for usage. If this isn't done by loading contents from the on-board flash (not all
devices have one), a design must be loaded by calling one of the ProgramFPGA*() calls.
These call internally reset the FPGA after design download. From now on, data can be
transferred.

Important: All data transfer is based on a 32 bit bus system which must be implemented
inside the FPGA design. PCI devices support this natively, while USB devices use a
protocol which is implemented by Cesys and sits on top of a stable bulk transfer
implementation.

Methods/Functions
Open

API Code
C++ void ceDevice::Open()

C CE_RESULT Open(CE_DEVICE_HANDLE Handle)
.NET void ceDevice.Open()

Gain access to the specific device. Calling one of the other functions in this section require
a successful call to Open().

Notice: If two or more applications try to open one device, PCI and USB devices behave a
bit different. For USB devices, Open() causes an error if the device is already in use. PCI
allows opening one device from multiple processes. As PCI drivers are not developed by
Cesys, it's not possible to us to prevent this (as we see this as strange behavior). The best
way to share communication of more than one application with devices would be a client /
server approach.

Close

API Code
C++ void ceDevice::Close()

C CE_RESULT Close(CE_DEVICE_HANDLE Handle)
.NET void ceDevice.Close()

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -48- preliminary

http://www.cesys.com/

Finish working with the given device.

ReadRegister

API Code
C++ unsigned int ceDevice::ReadRegister(unsiged int uiRegister)

C CE_RESULT ReadRegister(CE_DEVICE_HANDLE Handle, unsigned int uiRegister,
unsigned int *puiValue)

.NET uint ceDevice.ReadRegister(uint uiRegister)

Read 32 bit value from FPGA design address space (internally just calling ReadBlock()
with size = 4).

WriteRegister

API Code
C++ void ceDevice::WriteRegister(unsiged int uiRegister, unsigned int uiValue)

C CE_RESULT WriteRegister(CE_DEVICE_HANDLE Handle, unsigned int uiRegister,
unsigned int uiValue)

.NET void ceDevice.WriteRegister(uint uiRegister, uint uiValue)

Write 32 bit value to FPGA design address space (internally just calling WriteBlock() with
size = 4).

ReadBlock

API Code
C++ void ceDevice::ReadBlock(unsiged int uiAddress, unsigned char *pucData, unsigned int

uiSize, bool bIncAddress)
C CE_RESULT ReadBlock(CE_DEVICE_HANDLE Handle, unsigned int uiAddress,

unsigned char *pucData, unsigned int uiSize, unsigned int uiIncAddress)
.NET void ceDevice.ReadBlock(uint uiAddess, byte[] Data, uint uiLen, bool bIncAddress)

Read a block of data to the host buffer which must be large enough to hold it. The size
should never exceed the value retrieved by GetMaxTransferSize() for the specific device.
bIncAddress is at the moment available for USB devices only. It flags to read all data from
the same address instead of starting at it.

WriteBlock

API Code
C++ void ceDevice::WriteBlock(unsiged int uiAddress, unsigned char *pucData, unsigned int

uiSize, bool bIncAddress)
C CE_RESULT WriteBlock(CE_DEVICE_HANDLE Handle, unsigned int uiAddress,

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -49- preliminary

http://www.cesys.com/

unsigned char *pucData, unsigned int uiSize, unsigned int uiIncAddress)
.NET void ceDevice.WriteBlock(uint uiAddess, byte[] Data, uint uiLen, bool bIncAddress)

Transfer a given block of data to the 32 bit bus system address uiAddress. The size should
never exceed the value retrieved by GetMaxTransferSize() for the specific device.
bIncAddress is at the moment available for USB devices only. It flags to write all data to the
same address instead of starting at it.

WaitForInterrupt

API Code
C++ bool ceDevice::WaitForInterrupt(unsigned int uiTimeOutMS)

C CE_RESULT WaitForInterrupt(CE_DEVICE_HANDLE Handle, unsigned int
uiTimeOutMS, unsigned int *puiRaised)

.NET bool ceDevice.WaitForInterrupt(uint uiTimeOutMS)

(PCI only) Check if the interrupt is raised by the FPGA design. If this is done in the time
specified by the timeout, the function returns immediately flagging the interrupt is raised
(return code / *puiRaised). Otherwise, the function returns after the timeout without
signaling.

Important: If an interrupt is caught, EnableInterrupt() must be called again before checking
for the next. Besides that, the FPGA must be informed to lower the interrupt line in any
way.

EnableInterrupt

API Code
C++ void ceDevice::EnableInterrupt()

C CE_RESULT EnableInterrupt(CE_DEVICE_HANDLE Handle)
.NET void ceDevice.EnableInterrupt()

(PCI only) Must be called in front of calling WaitForInterrupt() and every time an interrupt is
caught and should be checked again.

ResetFPGA

API Code
C++ void ceDevice::ResetFPGA()

C CE_RESULT ResetFPGA(CE_DEVICE_HANDLE Handle)
.NET void ceDevice.ResetFPGA()

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -50- preliminary

http://www.cesys.com/

Pulses the FPGA reset line for a short time. This should be used to sync the FPGA design
with the host side peripherals.

ProgramFPGAFromBIN

API Code
C++ void ceDevice::ProgramFPGAFromBIN(const char *pszFileName)

C CE_RESULT ProgramFPGAFromBIN(CE_DEVICE_HANDLE Handle, const char
*pszFileName)

.NET void ceDevice.ProgramFPGAFromBIN(string sFileName)

Program the FPGA with the Xilinx tools .bin file indicated by the filename parameter. Calls
ResetFPGA() subsequently.

ProgramFPGAFromMemory

API Code
C++ void ceDevice::ProgramFPGAFromMemory(const unsigned char *pszData, unsigned int

uiSize)
C CE_RESULT ProgramFPGAFromMemory(CE_DEVICE_HANDLE Handle, const

unsigned char *pszData, unsigned int uiSize)
.NET void ceDevice.ProgramFPGAFromMemory(byte[] Data, uint Size)

Program FPGA with a given array created with UDKLab. This was previously done using
fpgaconv.

ProgramFPGAFromMemoryZ

API Code
C++ void ceDevice::ProgramFPGAFromMemoryZ(const unsigned char *pszData, unsigned

int uiSize)
C CE_RESULT ProgramFPGAFromMemoryZ(CE_DEVICE_HANDLE Handle, const

unsigned char *pszData, unsigned int uiSize)
.NET void ceDevice.ProgramFPGAFromMemoryZ(byte[] Data, uint Size)

Same as ProgramFPGAFromMemory(), except the design data is compressed.

SetTimeOut

API Code
C++ void ceDevice::SetTimeOut(unsigned int uiTimeOutMS)

C CE_RESULT SetTimeOut(CE_DEVICE_HANDLE Handle, unsigned int uiTimeOutMS)
.NET void ceDevice.SetTimeOut(uint uiTimeOutMS)

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -51- preliminary

http://www.cesys.com/

Set the timeout in milliseconds for data transfers. If a transfer is not completed inside this
timeframe, the API generates a timeout error.

EnableBurst

API Code
C++ void ceDevice::EnableBurst(bool bEnable)

C CE_RESULT EnableBurst(CE_DEVICE_HANDLE Handle, unsigned int uiEnable)
.NET void ceDevice.EnableBurst(bool bEnable)

(PCI only) Enable bursting in transfer, which frees the shared address / data bus between
PCI(e) chip and FPGA by putting addresses on the bus frequently only.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -52- preliminary

http://www.cesys.com/

UDKLab

Introduction

UDKLab is a replacement of the former cesys-Monitor, as well as cesys-Lab and fpgaconv.
It is primary targeted to support FPGA designers by offering the possibility to read and write
values from and to an active design. It can further be used to write designs onto the
device's flash, so FPGA designs can load without host intervention. Additionally, designs
can be converted to C/C++ and C# arrays, which allows design embedding into an
application.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -53- preliminary

http://www.cesys.com/

The main screen

The following screen shows an active session with an EFM01 device. The base view is
intended to work with a device, while additional functionality can be found in the tools
menu.

The left part of the screen contains the device initialization details, needed to prepare the
FPGA with a design (or just a reset if loaded from flash), plus optional register writes for
preparation of peripheral components.

The right side contains elements for communication with the FPGA design:

• Register read and write, either by value or bit-wise using checkboxes.
• Live update of register values.
• Data areas (like RAM or Flash) can be filled from file or read out to file.
• Live view of data areas.
• More on these areas below.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -54- preliminary

Figure 12: UDKLab Main Screen

http://www.cesys.com/

Using UDKLab

After starting UDKLab, most of the UI components are disabled. They will be enabled at
the point they make sense. As no device is selected, only device independent functions are
available:

• The FPGA design array creator
• The option to define USB Power-On behavior
• Info menu contents

All other actions require a device, which can be chosen via the device selector which pops
up as separate window:

Figure 13: Device selection flow

If the device list is not up to date, clicking Re-Enum will search again. A device can be
selected by either double clicking on it or choosing OK.

Important: Opening the device selector again will internally re-initialize the underlying API,
so active communication is stopped and the right panel is disabled again (more on the
state of this panel below).

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -55- preliminary

http://www.cesys.com/

After a device has been selected, most UI components are available:

• FPGA configuration
• FPGA design flashing [if device has support]
• Project controls
• Initializer controls (Related to projects)

The last disabled component at this point is the content panel. It is enabled if the
initialization sequence has been run. The complete flow to enable all UI elements can be
seen below:

Figure 14: Prepare to work with device

FPGA configuration

Choosing this will pop up a file selection dialog, allowing to choose the design for
download. If the file choosing isn't canceled, the design will be downloaded subsequent to
closing the dialog.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -56- preliminary

http://www.cesys.com/

FPGA design flashing

This option stores a design into the flash component on devices that have support for it.
The design is loaded to the FPGA after device power on without host intervention. How
and under which circumstances this is done can be found in the hardware description of
the corresponding device. The following screen shows the required actions for flashing:

Figure 15: Flash design to device

Projects

Device communication is placed into a small project management. This reduces the
actions from session to session and can be used for simple service tasks too. A projects
stores the following information:

• Device type it is intended to
• Initializing sequence
• Register list
• Data area list

Projects are handled like files in usual applications, they can be loaded, saved, new

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -57- preliminary

http://www.cesys.com/

projects can be created. Only one project can be active in one session.

Initializing sequence

The initializing sequence is a list of actions that must be executed in order to work with the
FPGA on the device. (The image shows an example initializing list of an EFM01, loading
our example design and let the LED blink for some seconds):

Figure 16: Initializing sequence

Sequence contents

UDKLab supports the following content for initialization:

• FPGA programming
• FPGA reset
• Register write
• Sleep

Without a design, an FPGA does nothing, so it must be loaded before usage. This can be
ensured in two ways:

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -58- preliminary

http://www.cesys.com/

• Download design from host
• Load design from flash (supported on EFM01, USBV4F and USBS6)

So the first entry in the initialize list must be a program entry or, if loaded from flash, a reset
entry (To sync communication to the host side). Subsequent to this, a mix of register write
and sleep commands can be placed, which totally depends on the underlying FPGA
design. This can be a sequence of commands sent to a peripheral component or to fill data
structures with predefined values. If things get complexer, i.e. return values must be
checked, this goes beyond the scope of the current UDKLab implementation and must be
solved by a host process.

To control the sequence, the buttons on the left side can be used. In the order of
appearance, they do the following (also indicated by tooltips):

• Clear complete list
• Add new entry (to the end of the list)
• Move currently selected entry on position up
• Move currently selected entry on position down
• Remove currently selected entry

All buttons should be self explanatory, but here's a more detailed look on the add entry, it
opens the following dialog:

One of the four possible entries must be selected using the radio button in front of it.
Depending on the option, one or two parameters must be set, OK adds the new action to
initializer list.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -59- preliminary

Figure 17: Add new initializing task

http://www.cesys.com/

Sequence start

The button sitting below the list runs all actions from top to bottom. In addition to this, the
remaining UI components, the content panel, will be enabled, as UDKLab expects a
working communication at this point. The sequence can be modified an started as often as
wished.

Content panel

The content panel can be a visual representation of the FPGA design loaded during
initialization. It consists of a list of registers and data areas, which can be visit and modified
using UDKLab. The view is split into two columns, while the left part contains the registers
and the right part all data area / block entries.

Figure 18: Content panel

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -60- preliminary

http://www.cesys.com/

Register entry

A register entry can be used to communicate with a 32 bit register inside the FPGA. In
UDKLab, a register consists of the following values:

• Address
• Name
• Info text

The visual representation of one register can be seen in the following image:

Figure 19: Register panel

The left buttons are responsible for adding new entries, move the entry up or down and
removing the current entry, all are self explanatory. The header shows it's mapping name
as well as the 32 bit address. The question mark in the lower right will show a tooltip if the
mouse is above it, which is just a little help for users. Both input fields can be used to write
in a new value, either hex- or decimal or contain the values if they are read from FPGA
design. The checkboxes represent one bit of the current value. Clicking the Read button
will read the current value from FPGA and update both text boxes as well as the
checkboxes, which is automatically done every 100ms if the Auto button is active. Setting
register values inside the FPGA is done in a similar way, clicking the Write button writes the
current values to the device. One thing needs a bit attention here:

Clicking on the checkboxes implicitly writes the value without the need to click on the Write
button !

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -61- preliminary

http://www.cesys.com/

Data area entry

A data area entry can be used to communicate with a data block inside the FPGA,
examples are RAM or flash areas. Data can be transfered from and to files, as well as
displayed in a live view. An entry constits of the following data:

• Address
• Name
• Data alignment
• Size
• Read-only flag

The visual representation is shown below.

Figure 20: Data area panel

Similar to the register visualization, the buttons on the right side can be used to add, move
and remove data area panels. The header shows the name and the address followed by
the data area details. Below are these buttons:

• Device To File: The complete area is read and stored to the file which is defined in the
file dialog opening after clicking the button.

• File To Device: This reads the file selected in the upcoming file dialog and stores the
contents in the data area, limited by the file size or data area size. This button is not
shown if the Read-only flag is set.

• Live View: If this button is active, the text view below shows the contents of the area,
updated every 100 ms, the view can be scrolled, so every piece can be visited.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -62- preliminary

http://www.cesys.com/

Additional information

References
• CESYS PCIS3BASE software API and sample code (pcibase_api.pdf)
• PLX 9056 PCI controller data book
• Specification for the “WISHBONE System-on-Chip (SoC) Interconnection Architecture for

Portable IP Cores” Revision B.3, released September 7, 2002 (wbspec_b3.pdf)
• XILINX application note 462 “Using Digital Clock Managers (DCMs) in Spartan-3

FPGAs” (xapp462.pdf, xapp462_vhdl.zip)
• MT48LC16M16A2 SDRAM data sheet (256MSDRAM.pdf)
• SPI FLASH data sheet (m25p40.pdf)
• Dual 8-bit transceiver data sheet (74FCT162245T_Datasheet.pdf)

Links
• http://www.vhdl-online.de/
• Informations about the VHDL language, including a tutorial, a language reference, design

hints for describing state machines, synthesis and the synthesizable language subset
• http://www.opencores.org/projects.cgi/web/wishbone/
• Home of the WISHBONE standard
• http://www.plxtech.com/
• Provider of the PLX 9056 PCI controller
• http://www.xilinx.com/
• Provider of the Spartan-3 FPGA and the free FPGA development environment ISE

WebPACK
• http://www.micron.com/
• Provider of the MT48LC16M16A2 SDRAM
• http://www.st.com/
• Provider of the M25P40 SPI FLASH memory

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -63- preliminary

http://www.cesys.com/
http://www.st.com/
http://www.micron.com/
http://www.xilinx.com/
http://www.plxtech.com/
http://www.opencores.org/projects.cgi/web/wishbone/
http://www.vhdl-online.de/

78-pin HD-Sub Connector diagram

The following diagram links 100-pin PIB- to 78-pin HD-Sub connector.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -64- preliminary

65

66

67

68

69

70

71

72

64

63

62

61

60

73

74

75

76

78

77

26

27

28

29

30

31

32

33

25

24

23

22

21

34

35

36

37

39

38

45

46

47

48

49

50

51

52

44

43

42

41

40

53

54

55

56

58

57

6

7

8

9

10

11

12

13

5

4

3

2

1

14

15

16

17

19

18

59 20Pin 97

Pin 95

Pin 93

Pin 91

Pin 89

Pin 87

Pin 85

Pin 83

Pin 81

Pin 79

Pin 68

Pin 67

Pin 66

Pin 65

Pin 64

Pin 63

Pin 62

Pin 61

Pin 60

Pin 5

Pin 7

Pin 9

Pin 11

Pin 13

Pin 15

Pin 17

Pin 19

Pin 20

Pin 22

Pin 24

Pin 25

Pin 26

Pin 27

Pin 28

Pin 29

Pin 30

Pin 31

Pin 32

Pin 96

Pin 94

Pin 92

Pin 90

Pin 88

Pin 86

Pin 84

Pin 82

Pin 80

Pin 78

Pin 77

Pin 76

Pin 75

Pin 74

Pin 73

Pin 72

Pin 71

Pin 70

Pin 69

Pin 4

Pin 6

Pin 8

Pin 10

Pin 12

Pin 14

Pin 16

Pin 18

Pin 21

Pin 23

Pin 33

Pin 34

Pin 35

Pin 36

Pin 37

Pin 38

Pin 39

Pin 40

Pin 41
EARTH PC GND

http://www.cesys.com/

FAQ
Question: Are the FPGA design examples available in Verilog HDL?

We strictly recommend to learn some VHDL basics, if you want to use parts of our demo
designs and understand the most important things.
Perhaps you want to take a look at this tutorial: http://www.vhdl-online.de/tutorial/

It is written in English. In Europe and especially in Germany VHDL is most widely used
instead of Verilog. So Verilog versions of our demo FPGA designs are not planned. You will
maybe have to change some VHDL port declarations from extended data types
(multidimensional arrays, records) to simple data types (std_logic, std_logic_vector(<>)) in
a mixed language design flow.

Question: Is it possible to use the low level SDRAM controller design example
(sdr_ctrl.vhd) directly without the WISHBONE wrapper?

Yes it is, but there are some additional things to consider:

• SDRAM memory and its controllers are complex design elements, which cost weeks of
development time to get them running. They are never easy to use, so take a careful
look at the SDRAM memory data sheet, especially the parts about initialization and
refresh.

• Try to use the SDRAM controller ip-core in simulation. The VHDL SDRAM model has
already been shipped with our board. You can download the Verilog version from
www.micron.com. Probably you will have to apply a delay time at the SDRAM controller
outputs (VHDL: "foo <= bar after 2 ns;") to avoid the SDRAM models setup- and hold-
time violations in a behavioral simulation.

• Be sure to make a clock phase alignment between the internal design clock and the
SDRAM clock. In our example this is done by using Xilinx application note 462 "Using
Digital Clock Managers (DCMs) in Spartan-3 FPGAs". This document and appropriate
VHDL/Verilog design files were available at:
http://www.xilinx.com/bvdocs/appnotes/xapp462.pdf

• http://www.xilinx.com/bvdocs/appnotes/xapp462_vhdl.zip
• http://www.xilinx.com/bvdocs/appnotes/xapp462_verilog.zip

Details on our demo SDRAM controller:

• The burst length is fixed to two to transfer data in 32 Bit pieces (2x16 Bit SDRAM data
bus width).

• Supported commands:
constant NOP : std_logic_vector(2 downto 0) := b"111";
constant READ : std_logic_vector(2 downto 0) := b"101";
constant WRITE : std_logic_vector(2 downto 0) := b"100";

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -65- preliminary

http://www.cesys.com/
http://www.xilinx.com/bvdocs/appnotes/xapp462_verilog.zip
http://www.xilinx.com/bvdocs/appnotes/xapp462_vhdl.zip
http://www.xilinx.com/bvdocs/appnotes/xapp462.pdf
http://www.micron.com/
http://www.vhdl-online.de/tutorial/

constant PRECHARGE : std_logic_vector(2 downto 0) := b"010";
constant AUTO_REFRESH : std_logic_vector(2 downto 0) := b"001";
constant LOAD_MODE_REGISTER : std_logic_vector(2 downto 0) := b"000";

LOAD_MODE_REGISTER and PRECHARGE are used for initialization only.

• SDRAM refresh has to be done manually every 7.8 us by applying the AUTO_REFRESH
command between data transfers or NOP commands.

• Before SDRAM can be used it has to be initialized in the following sequence:

1. Apply NOP for at least 100 us

2. Apply PRECHARGE

3. Apply AUTO_REFRESH every 7.8 us for 16384 times (takes together ~128 ms)

4. Apply LOAD_MODE_REGISTER

5. SDRAM controller is now ready for NOP, READ, WRITE and AUTO_REFRESH
commands in normal operation

• User interface (prefix “usr_”):

1. Command interface (usr_cmd_i[2:0], usr_ack_o, usr_adr_i[22:0]): Except from the
NOP command all other commands have to be held stable and valid at usr_cmd_i
until usr_ack_o is asserted. For READ and WRITE commands the address at
usr_adr_i has to be held stable and valid until usr_ack_o is asserted, too. For
other commands the value at usr_adr_i is “don't care”. Note that the address input
is 32 Bit/4 Byte aligned (223 x 4 Byte = 32 MByte). So you cannot address single
memory cells, but burst-2 starting points.

2. Data FPGA2SDRAM interface (usr_datai_i[15:0], usr_nextword_o): After a WRITE
command is applied a valid data burst signal consisting of two 16 Bit words has to
be put on usr_datai_i. The timing is given by usr_nextword_o, which is asserted
for two clock cycles. Note that usr_nextword_o is asserted one clock cycle !!!
before!!! data at usr_datai_i has to be valid. So it could be directly used as a FIFO
read strobe signal. It could easily be delayed using a simple D-type flip-flop, if
needed.

3. Data SDRAM2FPGA interface (usr_datai_i[15:0], usr_nextword_o): After a READ
command a valid data burst signal consisting of two 16 Bit words appears at
usr_datao_o. The timing is given by usr_valid_o, which is asserted for two clock
cycles. usr_valid_o is asserted clock cycle aligned with valid data at usr_datao_o.

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -66- preliminary

http://www.cesys.com/

Table of contents

Table of Contents
Copyright information .. 2

Overview .. 3
Summary of PCIS3BASE .. 3
Feature list .. 3
Included in delivery .. 4

Hardware .. 5
SPARTAN-3 FPGA .. 5
CESYS PIB slot .. 6
Board Size .. 7
Connectors and FPGA pinout ... 8

Description .. 8
FPGA I/O balls ... 9
LEDs ... 9
Plug-In board connectors .. 10
Internal Expansion port J21 .. 14
Local bus signals ... 15

ADS# .. 17
LCLK ... 17
LHOLD .. 17
LHOLDA ... 18
LINTo# ... 18
LW/R# .. 18
READY# .. 18

JTAG Interface .. 18
Memory interface .. 19
SPI Flash ... 20

FPGA design .. 21
Introduction .. 21
FPGA source code copyright information .. 23
FPGA source code license .. 23
Disclaimer of warranty ... 23
Design “pcis3base” ... 24

Files and modules ... 25

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -67- preliminary

http://www.cesys.com/

src/wishbone.vhd: .. 25
src/pcis3base_top.vhd: ... 25
src/wb_syscon.vhd: .. 25
src/wb_intercon.vhd: .. 25
src/wb_ma_plx.vhd: ... 25
src/wb_sl_sdr.vhd: ... 25
src/wb_sl_flash.vhd: .. 25
src/wb_sl_gpio.vhd: ... 26
src/wb_sl_timer.vhd: .. 26
src/sdr_ctrl.vhd: ... 26
src/flash_ctrl.vhd: ... 26
src/BUFG_CLK0_FB_SUBM.vhd : .. 26
pcis3base.ise: ... 26
pcis3base.ucf: ... 26

Module-hierarchy ... 27
Bus transactions .. 27

Local bus signals driven by the PLX PCI controller: .. 27
Local bus signals driven by the FPGA: ... 27
Local bus signal driven by the PLX PCI controller and the FPGA: .. 28
WISHBONE signals driven by the master: ... 28
WISHBONE signals driven by slaves: .. 29
Example: ... 29

PCI interrupt ... 30
Design “performance_test” .. 31

Files and modules ... 31
src/performance_test.vhd: .. 31
performance_test.ise: ... 31
performance_test.ucf: ... 31

Bus transactions .. 32

Software ... 33
Introduction .. 33
Changes to previous versions ... 33
Windows ... 34

Requirements .. 34
Driver installation ... 34
Build UDK .. 34

Prerequisites ... 34
Solution creation and build .. 34

Linux .. 36
Requirements .. 36
Drivers .. 36

USB .. 36
PCI ... 37

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -68- preliminary

http://www.cesys.com/

Build UDK .. 38
Prerequisites ... 38
Makefile creation and build ... 38

Use APIs in own projects ... 40
C++ API .. 40

Add project to UDK build .. 40
C API .. 40
.NET API .. 41

API Functions in detail ... 41
API Error handling ... 41

C++ and .NET API ... 41
C API .. 41
Methods/Functions ... 42

Device enumeration .. 43
Methods/Functions ... 43

Information gathering ... 46
Methods/Functions ... 46

Using devices .. 48
Methods/Functions ... 48

UDKLab ... 53
Introduction .. 53
The main screen .. 54
Using UDKLab ... 55

FPGA configuration ... 56
FPGA design flashing .. 57
Projects ... 57
Initializing sequence .. 58
Content panel ... 60

Additional information ... 63
References .. 63
Links ... 63
78-pin HD-Sub Connector diagram ... 64

FAQ .. 65
Question: Are the FPGA design examples available in Verilog HDL? 65
Question: Is it possible to use the low level SDRAM controller design example (sdr_ctrl.vhd)
directly without the WISHBONE wrapper? .. 65

Table of contents .. 67

PCIS3BASE / C1010-3105 http://www.cesys.com/

User Doc V1.3 -69- preliminary

http://www.cesys.com/

	Copyright information
	Overview
	Summary of PCIS3BASE
	Feature list
	Included in delivery

	Hardware
	SPARTAN-3 FPGA
	CESYS PIB slot
	Board Size
	Connectors and FPGA pinout
	Description
	FPGA I/O balls
	LEDs
	Plug-In board connectors
	Internal Expansion port J21
	Local bus signals
	ADS#
	LCLK
	LHOLD
	LHOLDA
	LINTo#
	LW/R#
	READY#

	JTAG Interface
	Memory interface
	SPI Flash

	FPGA design
	Introduction
	FPGA source code copyright information
	FPGA source code license
	Disclaimer of warranty
	Design “pcis3base”
	Files and modules
	src/wishbone.vhd:
	src/pcis3base_top.vhd:
	src/wb_syscon.vhd:
	src/wb_intercon.vhd:
	src/wb_ma_plx.vhd:
	src/wb_sl_sdr.vhd:
	src/wb_sl_flash.vhd:
	src/wb_sl_gpio.vhd:
	src/wb_sl_timer.vhd:
	src/sdr_ctrl.vhd:
	src/flash_ctrl.vhd:
	src/BUFG_CLK0_FB_SUBM.vhd :
	pcis3base.ise:
	pcis3base.ucf:

	Module-hierarchy

	Bus transactions
	Local bus signals driven by the PLX PCI controller:
	Local bus signals driven by the FPGA:
	Local bus signal driven by the PLX PCI controller and the FPGA:
	WISHBONE signals driven by the master:
	WISHBONE signals driven by slaves:
	Example:
	PCI interrupt

	Design “performance_test”
	Files and modules
	src/performance_test.vhd:
	performance_test.ise:
	performance_test.ucf:

	Bus transactions

	Software
	Introduction
	Changes to previous versions
	Windows
	Requirements
	Driver installation
	Build UDK
	Prerequisites
	Solution creation and build

	Linux
	Requirements
	Drivers
	USB
	PCI

	Build UDK
	Prerequisites
	Makefile creation and build

	Use APIs in own projects
	C++ API
	Add project to UDK build

	C API
	.NET API

	API Functions in detail
	API Error handling
	C++ and .NET API
	C API
	Methods/Functions

	Device enumeration
	Methods/Functions

	Information gathering
	Methods/Functions

	Using devices
	Methods/Functions

	UDKLab
	Introduction
	The main screen
	Using UDKLab
	FPGA configuration
	FPGA design flashing
	Projects
	Initializing sequence
	Content panel

	Additional information
	References
	Links
	78-pin HD-Sub Connector diagram

	FAQ
	Question: Are the FPGA design examples available in Verilog HDL?
	Question: Is it possible to use the low level SDRAM controller design example (sdr_ctrl.vhd) directly without the WISHBONE wrapper?

	Table of contents

